Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664790

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Single-Cell Analysis , Transcriptome , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Animals , Gene Expression Profiling , Chromatin/metabolism , Chromatin/genetics , Mice, Inbred C57BL , Gene Regulatory Networks , Chromatin Assembly and Disassembly , Disease Models, Animal , Male , RNA-Seq , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology
2.
Mol Ther Nucleic Acids ; 35(1): 102106, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38222298

ABSTRACT

[This retracts the article DOI: 10.1016/j.omtn.2021.01.034.].

3.
Korean Circ J ; 53(3): 151-167, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36914604

ABSTRACT

BACKGROUND AND OBJECTIVES: Acute myocardial infarction (AMI) often occurs suddenly and leads to fatal consequences. Ferroptosis is closely related to the progression of AMI. However, the specific mechanism of ferroptosis in AMI remains unclear. METHODS: We constructed a cell model of AMI using AC16 cells under oxygen and glucose deprivation (OGD) conditions and a mice model of AMI using the left anterior descending (LAD) ligation. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide was employed to determine cell viability. The levels of lactate dehydrogenase, creatine kinase, reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and iron were measured using corresponding kits. Dual luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull-down were performed to validate the correlations among AC005332.7, miR-331-3p, and cyclin D2 (CCND2). Hematoxylin and eosin staining was employed to evaluate myocardial damage. RESULTS: AC005332.7 and CCND2 were lowly expressed, while miR-331-3p was highly expressed in vivo and in vitro models of AMI. AC005332.7 sufficiency reduced ROS, MDA, iron, and ACSL4 while boosting the GSH and GPX4, indicating that AC005332.7 sufficiency impeded ferroptosis to improve cardiomyocyte injury in AMI. Mechanistically, AC005332.7 interacted with miR-331-3p, and miR-331-3p targeted CCND2. Additionally, miR-331-3p overexpression or CCND2 depletion abolished the suppressive impact of AC005332.7 on ferroptosis in OGD-induced AC16 cells. Moreover, AC005332.7 overexpression suppressed ferroptosis in mice models of AMI. CONCLUSIONS: AC005332.7 suppressed ferroptosis in OGD-induced AC16 cells and LAD ligation-operated mice through modulating miR-331-3p/CCND2 axis, thereby mitigating the cardiomyocyte injury in AMI, which proposed novel targets for AMI treatment.

4.
Am J Physiol Cell Physiol ; 324(2): C222-C235, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36622073

ABSTRACT

This study investigates the mechanism by which microRNA (miR)-30e-3p reduces coronary microembolism (CME)-induced cardiomyocyte pyroptosis and inflammation. Cardiac function tests, histological staining, and transmission electron microscopy were performed on CME-model rats injected with adeno-associated viral vectors. Cardiomyocytes were transfected 24 h before a cellular model of pyroptosis was established via treatment with 1 µg/mL lipopolysaccharide (LPS) for 4 h and 5 mM ATP for 30 min. Pyroptosis, inflammation, and Wnt/ß-catenin signaling in cardiomyocytes were detected. Dual-luciferase reporter assays and/or RNA pull-down assays were performed to verify the binding of miR-30e-3p to HDAC2 mRNA or HDAC2 to the SMAD7 promoter. Chromatin immunoprecipitation was used to assess the level of H3K27 acetylation at the SMAD7 promoter. miR-30e-3p and SMAD7 expression levels were downregulated and HDAC2 expression was upregulated with CME. The overexpression of miR-30e-3p restored cardiac functions in CME-model rats and reduced serum cTnI, IL-18, and IL-1ß levels, microinfarcts, inflammatory cell infiltration, apoptosis, collagen content, and GSDMD-N, cleaved caspase-1, and NLRP3 expression in the myocardium, but these effects were reversed by SMAD7 knockdown. The overexpression of miR-30e-3p or knockdown of HDAC2 reduced LDH, IL-18, and IL-1ß secretion, propidium iodide intake, and GSDMD-N, NLRP3, cleaved caspase-1, Wnt3a, Wnt5a, and ß-catenin expression in the cardiomyocyte model. miR-30e-3p inhibited the expression of HDAC2 by binding HDAC2 mRNA. HDAC2 repressed the expression of SMAD7 by catalyzing H3K27 deacetylation at the SMAD7 promoter. miR-30e-3p, by binding HDAC2 to promote SMAD7 expression, reduces CME-induced cardiomyocyte pyroptosis and inflammation.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Interleukin-18/metabolism , beta Catenin/metabolism , Pyroptosis/genetics , Inflammation , RNA, Messenger , Caspases/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , Histone Deacetylase 2/genetics
5.
J Mol Med (Berl) ; 100(5): 763-780, 2022 05.
Article in English | MEDLINE | ID: mdl-35414011

ABSTRACT

This study aims to explore the mechanism underlying miR-142-3p regulating myocardial injury induced by coronary microembolization (CME) through ATXN1L. miR-142-3p overexpression or ATXN1L knockout adenovirus vectors were injected into rats before CME treatment. Cardiac functions were examined by echocardiography, and pathologies of myocardial tissues were assessed. Then, serum cTnI and IL-1ß contents and concentrations of IL-1ß and IL-18 in cell supernatant were measured. Immunofluorescence determined the localization of histone deacetylase 3 (HDAC3). The interaction between miR-142-3p and ATXN1L as well as the binding between HDAC3 and histone 3 (H3) was identified. The binding of ATXN1L and HDAC3 to NOL3 promoter was verified using ChIP. The levels of ATXN1L, NOL3, and miR-142-3p as well as apoptosis- and pyroptosis-related proteins and acetyl-histone 3 (ac-H3) were evaluated. CME treatment impaired the cardiac functions in rats and increased cTnI content. CME rats showed microinfarction foci in myocardial tissues. After CME treatment, miR-142-3p and NOL3 were modestly expressed while ATXN1L content was elevated, in addition to increases in apoptosis and pyroptosis. miR-142-3p overexpression or ATXN1L knockout alleviated CME-induced myocardial injury, cardiomyocyte apoptosis, and pyroptosis in myocardial tissues. miR-142-3p regulated ATXN1L expression in a targeted manner. In the cellular context, miR-142-3p overexpression attenuated apoptosis and pyroptosis in cardiomyocytes, which was partly counteracted by ATXN1L overexpression. ATXN1L functioned on cardiomyocytes by promoting deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression. Inhibition of HDAC3 or overexpression of NOL3 ameliorated the promotive effects of ATXN1L on cardiomyocyte apoptosis and pyroptosis. In vivo and in vitro evidence in this study supported that miR-142-3p could attenuate CME-induced myocardial injury via ATXN1L/HDAC3/NOL3. HIGHLIGHTS: CME model witnessed aberrant expression of miR-142-3p, ATXN1L, and NOL3; miR-142-3p negatively regulated ATXN1L; miR-142-3p mediated CME-induced myocardial injury through ATXN1L; ATXN1L promoted deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression; ATXN1L acted on cardiomyocyte apoptosis and pyroptosis through HDAC3/NOL3 axis.


Subject(s)
MicroRNAs , Animals , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Pyroptosis , Rats
6.
Sci Rep ; 12(1): 3294, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228564

ABSTRACT

MALAT1 was reported to sponge miR-30e, miR-126 and miR-155 in the pathogenesis of many diseases. Plasma miR-30e can indicate the risk of no-reflow during primary percutaneous coronary intervention (pPCI), while miR-126 can be used as a predictor of coronary slow flow phenomenon. In this study, we compared the diagnostic value of above genes in the prediction of no-reflow phenomenon in ST-segment elevation myocardial infarction (STEMI) subjects receiving pPCI. Quantitative real-time PCR, ELISA, Western blot and luciferase assays were performed to explore the regulatory relationship of MALAT1/miR-30e, MALAT1/miR-126, MALAT1/miR-155, miR-126/HPSE, and miR-155/EDN1. ROC analysis was carried out to evaluate the potential value of MALAT1, miRNAs and target genes in differentiating normal reflow and no-reflow in STEMI patients receiving pPCI. Elevated MALAT1, CRP, HPSE, and EDN1 expression and suppressed miR-30e, miR-155 and miR-126 expression was found in the plasma of STEMI patients receiving pPCI who were diagnosed with no-reflow phenomenon. ROC analysis showed that the expression of MALAT1, miR-30e, miR-126 and CRP could be used as predictive biomarkers to differentiate normal reflow and no-reflow in STEMI patients receiving pPCI. MALAT1 was found to suppress the expression of miR-30e, miR-126 and miR-155, and HPSE and EDN1 were respectively targeted by miR-126 and miR-155. This study demonstrated that MALAT1 could respectively sponge the expression of miR-30e, miR-126 and miR-155. And miR-30e, miR-126 and miR-155 respectively targeted CRP, HPSE and EDN1 negatively. Moreover, MALAT1 could function as an effective biomarker of no-reflow phenomenon in STEMI patients receiving pPCI.


Subject(s)
MicroRNAs , No-Reflow Phenomenon , Percutaneous Coronary Intervention , RNA, Long Noncoding , ST Elevation Myocardial Infarction , Biomarkers , Coronary Angiography/adverse effects , Humans , MicroRNAs/genetics , No-Reflow Phenomenon/diagnosis , RNA, Long Noncoding/genetics , ST Elevation Myocardial Infarction/genetics , ST Elevation Myocardial Infarction/surgery
7.
Apoptosis ; 27(3-4): 206-221, 2022 04.
Article in English | MEDLINE | ID: mdl-35084609

ABSTRACT

This study investigated how miR-136-5p partially affected cardiomyocyte pyroptosis in rats with coronary microembolization (CME). The cardiac function and structure of rats with CME were evaluated using echocardiography, hematoxylin and eosin staining, Masson staining, and troponin I level. Pyroptosis was induced by lipopolysaccharide (LPS) in isolated rat cardiomyocytes and evaluated by the expression of caspase-1, NOD-like receptor family pyrin domain-containing 3, interleukin-1ß, and gasdermin D-N. After cell transfection, the expression of Ataxin-1 like (ATXN1L), pyrin domain-containing 1 (PYDC1), and pyroptosis-related proteins was assessed. Dual-luciferase reporter and immunoprecipitation assays were used to verify the relationships among miR-136-5p, ATXN1L, and capicua (CIC). MiR-136-5p was under-expressed, whereas ATXN1L was overexpressed in rats with CME and in LPS-treated primary cardiomyocytes. MiR-136-5p targeted ATXN1L, and ATXN1L bound to CIC to suppress PYDC1 expression. MiR-136-5p overexpression suppressed pyroptosis by inhibiting the binding of ATXN1L with CIC and promoting PYDC1 expression, which was reversed by simultaneous elevation of ATXN1L. In conclusion, miR-136-5p suppressed pyroptosis by upregulating PYDC1 via ATXN1L/CIC axis, thereby attenuating cardiac damage caused by CME.


Subject(s)
MicroRNAs , Pyroptosis , Animals , Apoptosis , Lipopolysaccharides , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Pyroptosis/genetics , Rats
8.
Mol Ther Nucleic Acids ; 23: 1258-1271, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33717647

ABSTRACT

Increasing evidence suggests that mitochondrial microRNAs (miRNAs) are implicated in the pathogenesis of cardiovascular diseases; however, their roles in ischemic heart disease remain unclear. Herein, we demonstrate that miR-146a is enriched in the mitochondrial fraction of cardiomyocytes, and its level significantly decreases after ischemic reperfusion (I/R) challenge. Cardiomyocyte-specific knockout of miR-146a aggravated myocardial infarction, apoptosis, and cardiac dysfunction induced by the I/R injury. Overexpression of miR-146a suppressed anoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibiting the mitochondria-dependent apoptotic pathway and increasing the Bcl-2/Bax ratio. miR-146a overexpression also blocked mitochondrial permeability transition pore opening and attenuated the loss of mitochondrial membrane potential and cytochrome c leakage; meanwhile, miR-146a knockdown elicited the opposite effects. Additionally, miR-146a overexpression decreased cyclophilin D protein, not mRNA, expression. The luciferase reporter assay revealed that miR-146a binds to the coding sequence of the cyclophilin D gene. Restoration of cyclophilin D reversed the inhibitory action of miR-146a on cardiomyocyte apoptosis. Furthermore, cardiomyocyte-specific cyclophilin D deletion completely abolished the exacerbation of myocardial infarction and apoptosis observed in miR-146a cardiomyocyte-deficient mice. Collectively, these findings demonstrate that nuclear miR-146a translocates into the mitochondria and regulates mitochondrial function and cardiomyocyte apoptosis. Our study unveils a novel role for miR-146a in ischemic heart disease.

9.
Mol Ther Nucleic Acids ; 23: 1304-1322, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33717651

ABSTRACT

In this study, we aim to investigate the regulation of specific long non-coding RNAs (lncRNAs) on the progression of ischemia/reperfusion (I/R) injury. We identified and characterized the exosomes derived from mouse primary aortic endothelial cells. Subsequently, we found that these exosomes expressed typical exosomal markers and high levels of LINC00174, which significantly ameliorated I/R-induced myocardial damage and suppressed the apoptosis, vacuolation, and autophagy of myocardial cells. Mechanistic approaches revealed that LINC00174 directly interacted with SRSF1 to suppress the expression of p53, thus restraining the transcription of myocardin and repressing the activation of the Akt/AMPK pathway that was crucial for autophagy initiation in I/R-induced myocardial damage. Moreover, this molecular mechanism was verified by in vivo study. In summary, exosomal LINC00174 generated from vascular endothelial cells repressed p53-mediated autophagy and apoptosis to mitigate I/R-induced myocardial damage, suggesting that targeting LINC00174 may be a novel strategy to treat I/R-induced myocardial infarction.

10.
J Cell Mol Med ; 24(19): 11500-11511, 2020 10.
Article in English | MEDLINE | ID: mdl-32860492

ABSTRACT

MiRNAs can be used as promising diagnostic biomarkers of heart failure, while lncRNAs act as competing endogenous RNAs of miRNAs. In this study, we collected peripheral blood monocytes from subjects with or without HF to explore the association between certain lncRNAs, miRNAs and HF. Heart failure patients with preserved or reduced ejection fraction were recruited for investigation. ROC analysis was carried out to evaluate the diagnostic values of certain miRNAs and lncRNAs in HF. Luciferase assays were used to study the regulatory relationship between above miRNAs and lncRNAs. LncRNA overexpression was used to explore the effect of certain miRNAs in H9C2 cells. Expression of miR-30c was significantly decreased in the plasma and peripheral blood monocytes of patients suffering from heart failure, especially in these with reduced ejection fraction. On the contrary, the expression of lncRNA-CASC7 was remarkably increased in the plasma and peripheral blood monocytes of patients suffering from heart failure. Both miR-30c and lncRNA-CASC7 expression showed a promising efficiency as diagnostic biomarkers of heart failure. Luciferase assays indicated that miR-30c played an inhibitory role in lncRNA-CASC7 and IL-11 mRNA expression. Moreover, the overexpression of lncRNA-CASC7 suppressed the expression of miR-30c while evidently increasing the expression of IL-11 mRNA and protein in H9C2 cells. This study clarified the relationship among miR-30c, lncRNA-CASC7 and IL-11 expression and the risk of heart failure and showed that lncRNA-CASC7 is potentially involved in the pathogenesis of HF via modulating the expression of miR-30c.


Subject(s)
Gene Expression Regulation , Heart Failure/genetics , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Aged , Animals , Base Sequence , Biomarkers/blood , Cell Line , Down-Regulation/genetics , Female , Heart Failure/blood , Heart Failure/diagnosis , Heart Failure/pathology , Humans , Interleukin-11/metabolism , Male , MicroRNAs/blood , MicroRNAs/metabolism , Monocytes/metabolism , RNA, Long Noncoding/genetics , ROC Curve , Rats , Up-Regulation/genetics
11.
Am J Physiol Heart Circ Physiol ; 318(2): H332-H344, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31858814

ABSTRACT

Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). In this study, we explored the functional significance and molecular mechanisms of TUG1/miR-132-3p axis in ischemia-challenged cardiomyocytes. In primary cardiomyocytes challenged with H2O2, expressions of miR-132-3p, TUG1, and other target proteins were measured by RT quantitative PCR or Western blot analysis; cell viability by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay; apoptosis by annexin V and propidium iodide staining; the abundance of acetylated H3K9 or histone deacetylase 3 (HDAC3) within the promoter of target genes by chromatin immunoprecipitation; the direct interaction between miR-132-3p and HDAC3 or TUG1 by luciferase reporter assay. The biological significance of miR-132-3p, TUG1, and HDAC3 was assessed using miR-132-3p mimic, siRNA-targeting TUG1 and HDAC3 inhibitor RGF966, respectively, in H2O2-challenged cells in vitro or ischemia-reperfusion (I/R)-induced AMI in vivo. miR-132-3p was downregulated, whereas TUG1 upregulated in H2O2-challenged cardiomyocytes. Overexpressing miR-132-3p or knocking down TUG1 significantly improved viability, inhibited apoptosis, and reduced ROS production in H2O2-stressed cardiomyocytes in vitro and alleviated I/R-induced AMI in vivo. Mechanistically, TUG1 sponged miR-132-3p and upregulated HDAC3, which reduced the acetylation of H3K9 and epigenetically inhibited expressions of antioxidative genes, including Bcl-xL, Prdx2, and Hsp70. The TUG1/miR-132-3p/HDAC3 axis critically regulates ROS production and the pathogenic development of AMI. Targeting TUG1, upregulating miR-132-3p, or inhibiting HDAC3 may benefit AMI treatment.NEW & NOTEWORTHY Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). However, the underlying mechanisms remain elusive. In the present study, we reported for the first time that H2O2 or ischemia-reperfusion-induced TUG1, by sponging microRNA 132-3p, activated histone deacetylase 3, which in turn targeted multiple protective genes, stimulated intracellular ROS accumulation, and aggravated the injury of AMI. Our findings might provide some insight to seek new targets for AMI treatment.


Subject(s)
Histone Deacetylases/genetics , MicroRNAs/genetics , Myocardial Ischemia/genetics , RNA, Long Noncoding/genetics , Acrylamides/pharmacology , Animals , Apoptosis , Epigenesis, Genetic , Gene Knockdown Techniques , Humans , Hydrogen Peroxide/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , Phenylenediamines/pharmacology , RNA, Long Noncoding/biosynthesis , RNA, Small Interfering/pharmacology , Reactive Oxygen Species/metabolism
12.
Cell Biochem Biophys ; 61(2): 399-406, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21556942

ABSTRACT

We determined the effect of atorvastatin on myocardial apoptosis and caspase-8 activation following coronary microembolization (CME) in a rat model. For this, 50 rats were randomly and equally divided into CME; sham-operated (control); atorvastatin lavage; gastric lavage control; and caspase-8 inhibitor (CHO) groups. In CME animals, a microembolization ball was injected through the left ventricle. Sham animals were injected with normal saline (NS). Atorvastatin group received atorvastatin gastric lavage once-a-day, 1 week before surgery. Gastric lavage controls had similar lavage with NS. CHO group was i.p-injected (CHO: 10 mg/kg) 30 min before surgery. Cardiac indices in each group were determined by echocardiography 6-h postoperatively. TUNEL assay and western blot were used for myocardial apoptosis and expression of caspases-3/-8, respectively. Echocardiography data show that left ventricular ejection fraction (LVEF) in CME group was significantly decreased (P < 0.05) compared with sham controls. Besides, left ventricular fractional shortening (FS) and cardiac output (CO) were also decreased with an increase in left ventricular end-diastolic dimension (LVEDd). Atorvastatin and CHO animals had significantly improved (P < 0.05) cardiac function compared with CME group. Myocardial apoptosis and activation levels of caspases-3/-8 were significantly increased (P < 0.05) compared with sham; myocardial apoptosis and activation levels of caspases-3/-8 were significantly decreased (P < 0.05) in atorvastatin and CHO groups compared with CME group. In conclusion, atorvastatin pretreatment suppressed post-CME myocardial apoptosis and improved cardiac function through the blockade of a myocardial death receptor-mediated apoptotic pathway.


Subject(s)
Apoptosis/drug effects , Caspase 8/metabolism , Coronary Vessels/drug effects , Embolization, Therapeutic , Heptanoic Acids/pharmacology , Myocardium/cytology , Myocardium/metabolism , Pyrroles/pharmacology , Animals , Atorvastatin , Caspase 3/metabolism , Enzyme Activation/drug effects , Heart/drug effects , Heart/physiology , Male , Rats , Rats, Sprague-Dawley , Receptors, Death Domain/metabolism
13.
Zhonghua Xin Xue Guan Bing Za Zhi ; 38(4): 363-8, 2010 Apr.
Article in Chinese | MEDLINE | ID: mdl-20654086

ABSTRACT

OBJECTIVE: To investigate the dynamic changes of cardiomyocyte apoptosis and the role of death receptor apoptotic pathway in a rat model of coronary microembolization (CME). METHODS: Adult rats were randomized to coronary microembolization (CME group, n = 63) or sham-operated group (S group, n = 55). CME model was established by aortic injection of 0.1 ml microspheres (42 microm, 3 x 10(4)/ml) into the left ventricle when the ascending aorta was temporarily clamped.S group received 0.1 ml saline injection and survived rats were randomly examined at 0, 3, 6, 12 and 24 hour post CME (n = 10 each). Heart function was evaluated by echocardiography. Myocardium sample was stained with hematoxylin-eosin and hematoxylin-basic fuchsin-picric acid to detect infarct areas. Cardiomyocyte apoptosis was detected with TUNEL staining. The expression of caspase-3 and caspase-8 was measured by Western blot analysis. RESULTS: Compared with S group, the left ventricular ejection fraction was significantly decreased and left ventricular end-diastolic diameter was significantly increased in CME group (all P < 0.05) except 0 hour CME group. The infarct sizes were similar in 3 hour, 6 hour, 12 hour, and 24 hour CME groups (P > 0.05). The apoptosis index (AI) in CME group were significantly higher at each time point compared to S group (P < 0.05) except 0 hour CME group and peaked at 6 hours. Apoptotic cardiomyocytes were found mainly in the myocardial microinfarcted area and border zones. The relative expression of caspase-3 and caspase-8 in CME group were both significantly increased at 3 hours and peaked at 6 hour post CME (P < 0.05). CONCLUSION: Cardiomyocytes apoptosis was significantly increased after coronary microembolization via activating death receptor apoptotic pathway in this coronary microembolization model.


Subject(s)
Apoptosis , Coronary Vessels/pathology , Myocytes, Cardiac/metabolism , Receptors, Death Domain/metabolism , Thromboembolism/pathology , Animals , Male , Rats , Rats, Sprague-Dawley , Thromboembolism/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...